iOS 图片解码(decode)笔记 您所在的位置:网站首页 imagenamed imagewithcontent iOS 图片解码(decode)笔记

iOS 图片解码(decode)笔记

#iOS 图片解码(decode)笔记| 来源: 网络整理| 查看: 265

为什么图像在显示到屏幕上之前要进行解码

一般我们使用的图像是JPEG/PNG,这些图像数据不是位图,而是是经过编码压缩后的数据,需要线将它解码转成位图数据,然后才能把位图渲染到屏幕上。

当你用 UIImage 或 CGImageSource 的那几个方法创建图片时,图片数据并不会立刻解码。图片设置到 UIImageView 或者 CALayer.contents 中去,并且 CALayer 被提交到 GPU 前,CGImage 中的数据才会得到解码。这一步是发生在主线程的,并且不可避免。

图片加载的工作流

概括来说,从磁盘中加载一张图片,并将它显示到屏幕上,中间的主要工作流如下:

假设我们使用 +imageWithContentsOfFile: 方法从磁盘中加载一张图片,这个时候的图片并没有解压缩; 然后将生成的 UIImage 赋值给 UIImageView ; 接着一个隐式的 CATransaction 捕获到了 UIImageView 图层树的变化; 在主线程的下一个 run loop 到来时,Core Animation 提交了这个隐式的 transaction ,这个过程可能会对图片进行 copy 操作,而受图片是否字节对齐等因素的影响,这个 copy 操作可能会涉及以下部分或全部步骤: 分配内存缓冲区用于管理文件 IO 和解压缩操作; 将文件数据从磁盘读到内存中; 将压缩的图片数据解码成未压缩的位图形式,这是一个非常耗时的 CPU 操作; 最后 Core Animation 使用未压缩的位图数据渲染 UIImageView 的图层。

在上面的步骤中,我们提到了图片的解压缩是一个非常耗时的 CPU 操作,并且它默认是在主线程中执行的。那么当需要加载的图片比较多时,就会对我们应用的响应性造成严重的影响,尤其是在快速滑动的列表上,这个问题会表现得更加突出。

图像的解码

解码操作是比较耗时的,并且没有GPU硬解码,只能通过CPU,iOS默认会在主线程对图像进行解码。解码过程是一个相当复杂的任务,需要消耗非常长的时间。60FPS ≈ 0.01666s per frame = 16.7ms per frame,这意味着在主线程超过16.7ms的任务都会引起掉帧。很多库都解决了图像解码的问题,不过由于解码后的图像太大,一般不会缓存到磁盘,SDWebImage的做法是把解码操作从主线程移到子线程,让耗时的解码操作不占用主线程的时间。

对于PNG图片来说,因为文件可能更大,所以加载会比JPEG更长,但是解码会相对较快,而且Xcode会把PNG图片进行解码优化之后引入工程。JPEG图片更小,加载更快,但是解压的步骤要消耗更长的时间,因为JPEG解压算法比基于zip的PNG算法更加复杂。 当加载图片的时候,iOS通常会延迟解压图片的时间,直到加载到内存之后。因为需要在绘制之前进行解压,这就会在准备绘制图片的时候影响性能。 iOS通常会延时解压图片,等到图片在屏幕上显示的时候解压图片。解压图片是非常耗时的操作。

图像解码的核心方法CGBitmapContextCreate CGContextRef CGBitmapContextCreate( void * data, size_t width, size_t height, size_t bitsPerComponent, size_t bytesPerRow, CGColorSpaceRef _Nullable space, uint32_t bitmapInfo)

上面的第一个参数是一个只想一块内存的指针,这块内存用于存储被绘制的图形,这块内存的size最小不能小于bytesPerRow*height(图形每行的字节数乘以图形的高度),传递NULL意味着由这个函数来管理图形的内存,这可以减少内存泄漏的问题;

第二个参数with是图形的width;

第三个参数高度是图形的高度;

第四个参数是像素中每一个颜色分量的像素位数;

pixel formatter

Pixel Format

我们前面已经提到了,位图其实就是一个像素数组,而像素格式则是用来描述每个像素的组成格式,它包括以下信息:

Bits per component :一个像素中每个独立的颜色分量使用的 bit 数; Bits per pixel :一个像素使用的总 bit 数; Bytes per row :位图中的每一行使用的字节数。

有一点需要注意的是,对于位图来说,像素格式并不是随意组合的,目前只支持以下有限的 17 种特定组合:

Supported Pixel Formats

Color Spaces

在 Quartz 中,一个颜色是由一组值来表示的,比如 0, 0, 1 。而颜色空间则是用来说明如何解析这些值的,离开了颜色空间,它们将变得毫无意义。比如,下面的值都表示蓝色:

blue_color

如果不知道颜色空间,那么我们根本无法知道这些值所代表的颜色。比如 0, 0, 1 在 RGB 下代表蓝色,而在 BGR 下则代表的是红色。在 RGB 和 BGR 两种颜色空间下,绿色是相同的,而红色和蓝色则相互对调了。因此,对于同一张图片,使用 RGB 和 BGR 两种颜色空间可能会得到两种不一样的效果:

color_profiles.png BitmapInfo Color Spaces and Bitmap Layout

我们前面已经知道了,像素格式是用来描述每个像素的组成格式的,比如每个像素使用的总 bit 数和每个独立的颜色分量使用的 bit 数。而要想确保 Quartz 能够正确地解析这些 bit 所代表的含义,我们还需要提供位图的布局信息 CGBitmapInfo :

typedef CF_OPTIONS(uint32_t, CGBitmapInfo) { kCGBitmapAlphaInfoMask = 0x1F, kCGBitmapFloatInfoMask = 0xF00, kCGBitmapFloatComponents = (1


【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有